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ABSTRACT: In this paper we study surface wave propagation in a transverse anisotropic fluid saturated 
porous layer lying between homogeneous layer with rigid boundary and a non-homogeneous elastic half 
space. This seems a realistic model for surface wave propagation. We derive the dispersion equation and 
discuss some particular cases for torsional surface wave under initial stress present in the porous layered 
medium. The effects of inhomogeneity, irregularity and initial stress have been studied. The phase velocity of 
the surface wave propagation is plotted against the wave number with the help of MATLAB graphical 
routines. Finally a conclusion is presented. 
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I. INTRODUCTION 

Seismology plays a vital role in the more general fields 
of geophysics and Earth sciences. In the nineteenth and 
twenties centuries seismology became a self-governing 
science. Due to the fact that the internal structure of the 
Earth is heterogeneous along with a totally rough layer, 
the medium porosity and the rigid boundary have an 
important role in the propagation of the seismic waves. 
Some valuable information concerning seismic wave 
propagation is available in the famous books of Ewing et 
al., [1] and Achenbach [2]. A large number of papers 
have been published on torsional wave propagation in 
elastic medium with exceptional forms of heterogeneity. 
Love waves over a pre-stressed elastic half space have 
been investigated by [3]. The rigidity effect on Love 
wave propagation in a non -homogenous layer under an 
initial stressed half space have been studied [4]. The 
surface wave solutions obtained by solving analytically 
the frequency equation in a transversely isotropic 
dissipative medium and the effect of transverse isotropy 
and initial stress parameter observed on the Rayleigh 
wave velocity [5]. The propagation of Love waves in a 
homogeneous irregular layer over an elastic porous 
half-space, under the effect of initial stress for both layer 
and half-space have been studied [6]. The SH-type 
surface wave propagation in a layered medium with an 
invariant initial stress, wherein a piezo-electric powered 
thin layer is perfectly bonded on a piezomagnetic 
substrate [7]. The effect of initial stress on the 
propagation of torsional waves in an anisotropic porous 
layer lying between a homogeneous and heterogeneous 
half space had been discussed [8]. It was observed that 
torsional wave propagation was much influenced by 
initial stress in an anisotropic layer lying between two 
half-spaces [9]. The dispersion curves plotted for 
torsional surface wave propagation in an 
inhomogeneous crustal layer under an initially stressed 
viscoelastic half-space [10]. The effect of initial stress 
and inhomogeneity parameter on Love wave 
propagation for different type of mediums was also 
discussed by [11, 13]. To investigate the effect of 
surface heterogeneities, irregularity and rigidity in fluid 

saturated porous layer over homogeneous and non-
homogeneous half spaces, studies have also been 
performed by [14-22] and developed the corresponding 
frequency equations in terms of phase velocity and 
wave number. 
In the present paper, we study the propagation of 
surface waves in an initially stressed transversely 
anisotropic fluid saturated porous layer lying between 
isotropic layer and inhomogeneous half space with a 
rectangular irregularity present in the half space under 
rigid boundary. The study shows that the 
inhomogeneity, rigidity and initial stress have significant 
effects on the propagation of surface waves. The results 
obtained in this study presented graphically with the 
help of MATLAB graphical routines. Some particular 
cases have also been discussed and corresponding 
dispersion equation is derived.  

II. FORMULATION OF PROBLEM 

In this problem we have taken the cylindrical coordinate 
system (�,  �, z) for a model consisting a transversely 
anisotropic liquid-saturated porous layer of thickness �� 
under an initial stress � = −�		 in direction of radial 
coordinate � which is lying between the elastic isotropic 
homogeneous rigid layer with thickness �
 and non-
homogeneous elastic half-space with rectangular 
irregularity of length 2m and height h at the lower 
interface. We have taken two dimensional (�-z plane) 
where the circumferential coordinate � is independent in 
� and z directions and the centre of the cylindrical 
coordinate system is situated on the middle of 
irregularity at the interface of lower half space, and z-
coordinate is downward and �-coordinate is parallel to 
the disturbance. Let the topmost elastic isotropic 
homogeneous rigid layer be assumed as the medium 
M1:− (�
 +  ��) ≤ 
 ≤ 0; the intermediate transversely 
isotropic liquid saturated porous layer be the medium 
M2:−�
 ≤ 
 ≤ 0 and half space be the medium 
M3: 0 ≤ 
 ≤ ∞. The inhomogeneity is present in both 
rigidity and mass density. The variations in rigidity and 
mass density have been taken into consideration. The 
geometry for the considered model is presented in Fig. 
1. 

e
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Fig. 1. Model for the Considered Problem. 

The expressions for the rigidity � and density � for 
considered mediums are given as 
for medium M1                                        � = �
, 
                                       � = �
,                   (1) 
for medium M2                                       � = ��, 
  � =  ��,                  (2) 
for medium M3                                        � = ���1 + �
��,  
                                      � =  ���1 + �
��,               (3) 
where  � > 0, � > 0 are constants of inverse length. 
Let the equation of irregularity for considered model be   
                                     
 = � ����                            (4)    

Where             ���� = �ℎ    ���  |�| ≤ !,
 0    ��� |�| > !,# 

                                    � = 
$

�% ,          � << 1. 
III. GOVERNING EQUATIONS 

The dynamical equations of motions for wave 
propagating in the direction of radial and circumferential 
coordinates are [23] 
'(		
'� + 1

�
'(	)
'� + '(	*

'
 + (		 − ())
� = � '�+

',� , 
-./0

-	 + 

	

-.00
-) + -.01

-* + �./0
	 = � -23

-42 ,                            (5) 

'(	*
'� + 1

�
'()*
'� + '(**

'
 + (	*
� = � '�5

',� , 
where (		 ,  (	) , (	*  , ()) , ()* , (** are the respective 
stress components and +, 6, 5 ��7 the respective 
components of displacement; 
Now the stress strain relation is given by 
                           (89 = :Ω;89+2�789 ,                (6) 

where, : and �  both are Lame’s elastic constants and  

;89 =   �1; = ≠ ?
0; = = ?#  is the Kronecker delta, 

788 = @ is the dilatation,  

and                  789 = 

� �+8,9 + +9,8),                 (7) 

Now, for wave propagating in the direction r and 
displacement in z direction, we have 
+
 = + = 0,  
5� = 5 = 0,                 (8) 
6� =  6��, 
, ,�   
By using Eqns. (7) and (8) in Eqn. (5) we obtain the 
following equation of motion without body forces: 
-./0

-	 + -.01
-* + �./0

	 = � -23
-42               (9) 

The stress components related to the displacement 
vectors, for the elastic medium are 
(		 = ()) = (** =  (	* = 0    

(	) = � A-3
-	 − 3

	B  

(*) = � -3
-*               (10) 

With the help of Eqn. (10), (9) takes the form of 

��
� A -2
-	2 + 


	
-

-	 − 

	2B 6 + -

-* A��
� -3
-*B =  ��
� -23

-42 

                (11) 
For waves varying harmonically with time, and moving 
parallel to the radial vector r, we take  

6 = C�
�D
�E��78F4             (12) 
where, E and  G  are the wave number and angular 
frequency respectively, D
�E�� is the first order Bessel’s 
function and therefore Eqn. (12) becomes 
H2I
H*2 + J′�*�

J�*�
HI
H* − E� A1 − K2

KL2
B C�
� = 0            (13)  

where, MN and c are the shear velocity and wave velocity 
respectively such as:  

MN = OJ
P  , and     

M = �G E⁄ �               (14)                                                                                  

For Medium M1 

By using Eqn. (1), Eqn.(13) reduces to 
H2I
H*2 − !
�C�
� = 0               (15) 

where !
� = E� A1 − K2
KR2

B, M
 and c are the shear velocity 

and torsional wave velocity respectively for medium M1 
and is given  

M
=OJR
PR

  , 

c = �G E⁄ �               (16) 
Solution of Eqn. (15) is given by 
C�
� = S
7%R* + S�7T%R*              (17) 
where S
 and S� are arbitrary constants. 
Thus, displacement vector for medium M1 given by 
equation (12) takes the form of 

6 = 6
�U�V� = S
7%R*D
�E��78F4 + S�7T%R*D
�E��78F4 
                (18) 

For Medium M3 

The Eqn. (14) with the help of (3) takes the form of 
H2I
H*2 + �W

�
XW*�
HI
H* − E� A1 − K2�
XY*�2

KZ 2�
XW*�2B C�
�=0            (19)  

whereM� is shear wave velocity for medium M3 and is 
given by   

M�=OJZ
PZ

                (20) 

To eliminate the term 
HI
H* from equation (19), we take 

C�
�= [�
�/ �1 + �
�and thus 
H2\�*�

H*2 − E� A1 − K2�
XY*�2
KZ 2�
XW*�2B [�
� =0                          (21) 

Now, we take dimensionless quantities ] = O1 − YK2
WKZ 2 

and ^ = _`�
X�W*�
W   in Eqn. (21), it reduces to 

H2\
Ha2  +(− 


b + c
a� [( ^� = 0               (22) 

where, R = 
K2�WTY�`
bKZ 2W2_  

The solution of differential Eqn. (22) will be of the form   
[( ^� = A5 WR,1/2(^) + A6 WR, -1/2(^)                   (23) 
where A5, A6 are constants and WR,1/2(^) is the Whittaker 
function [24]. 
Then, the solution vanishes at z→ ∞, that means, for 
^ → ∞, this can be written as: 
[( ^� = A5 WR,1/2(^)              (24) 
Now, by expanding Whittaker function in linear terms, 
we obtain the displacement vector for medium M3 as  

6 = 6� = Se7Tf*D
�E��78F4              (25) 
where  

g = 


XW* 7hij�Rk2l1�

2l _`�
X�W*�
W . [1 + _`n

W  �1 + 2�
�]  
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For Medium M2 

The governing equations for medium M2 in the absence 
of body forces, under anisotropic porous medium under 
the initial stress P, are given [25] by 
-q//
-	 + 


	
-q/0
-) + -q/1

-* + q//Tq00
	 − � -r0 ′

-* = -2
-42 ��		+ + �	)s�, 

-q/0
-	 + 


	
-q00

-) + -q01
-* + �q/0

	 − � -r1 ′
-	 = -2

-42 ��		6 + �	)C�, 
                (26) 
-q/1
-	 + 


	
-q01
-) + -q11

-* + q/1
	 − � -r0 ′

-	 = -2
-42 ��		5 + �	)t�, 

and 
-q
-	 =  -2

-42 ��	)+ + �))s�, 
-q
-) =  -2

-42 ��	)+ + �))C�,              (27) 

-q
-*  =  -2

-42 ��	)5 + �))t�, 
where, �		,�)),�**,�	*,�	),�)* are the stress 
components, (u, v, w) and (U, V, W) are the 
displacement vectors for solid and fluid respectively and 
the stress component for liquid is �. 
5	 ′ = 


�	 A-r
-) − � -3

-*B,  

5) ′ = 

� A-u

-* − -r
-	 B,               (28) 

5* ′ = 

�	 A-�	3�

-	 − -3
-)B, 

are components of the rotational vector 5 ′. 
The constitutive relations for medium M2 are  
�		 = �S + ��7		 + �S − 2v + ��7)) + �� + ��7** + wx, �)) = �S − 2v�7		 + S7)) + �7** + wx, 
�** = �7		 + �7)) + y7** + wx,             (29) 
�	) = 2v7	), 
�)* = 2z7)*, 
�	* = 2z7*	, 
where A, F, C N and G are the elastic constants for 
medium M2. wx is the coupling parameter between 
change of volume of solid and liquid. The vector � and 

the fluid pressure  �′ are related as 

−� = ��′,               (30) 
where, � is porosity of the layer.�		 , �	) �{| �)) are the 
mass coefficients associated with the densities 
 �,  �N  �{| �r  of the layer, solid and water respectively. 
�		  +  �	) = �1 − ���N  , �	) + �)) = � �r  ,              (31) 
Thus, the cumulative mass-density is  

�′ = �N  + ���r − �N  �              (32) 
The inequalities for mass coefficient hold [21] as: 

�		 > 0, �)) > 0, �	) < 0, �		�)) − �	) � > 0 (33) 
For torsional surface wave, we consider  
+ = 0, 5 = 0, 6 = 6��, 
, ,�, 
s = 0, t = 0, C = C��. 
, ,�             (34) 
which give the value of strain components as 
7		 = 0, 7)) = 7** = 7*	 = 0,    

27)* = -3
-*,               (35) 

27	) = -3
-	 − 3

	,    

By making use of Eqns. (34), (35) in (29), we get only 
two non-zero stress components as 
�		 = �)) = �** = �	* = 0,      

�)* = z -3
-*,                (36) 

�	) = v A-3
-	 − 3

	B, 

Now by making use of Eqn. (36), Eqns. (26) and (27) 
take the form of 

Av − }
�B A-23

-	2 + 

	

-3
-	 − 3

	2B+ z A-23
-*2B = -2

-42 ��		6 + �	)C� 
               (37) 
and  
-2

-42 ��	)6 + �))C� = 0             (38) 

Eqn. (38) implies that 

�	)6 + �))C = E�(say)               (39) 
By eliminating V from Eqns. (37), (39), we have 

Av − }
�B A-23

-	2 + 

	

-3
-	 − 3

	2B+ z A-23
-*2B = |′ -23

-42            (40) 

where 

|′= ��		 − P/02
P00

� 
The equation (40) indicates that the shear wave velocity 
lies along radial direction and is given by 

O~T�
2

H′  = O~T�
H M��, 

where M�, � and d are given by  

M� = O~
P′  and �=

}
�~ = dimensionless constraints due to 

the initial stress P, d = 
H′
P′ 

are dimensionless parameters for medium M2. 
To solve Eqn. (40), we consider 

6 = C�
�D
�E��78F4              (41) 
the Eqn. (40) with the help of Eqn. (41) becomes 
H2I
H*2 +��V = 0                (42) 

where � = E[�|(
K2
K22 − 
T�

H �]
1/2

 and � = ~
� 

The solution of differential Eqn. (42) is  
V�z� = S�cos �
 + Sb sin �
              (43) 
where S�,Sb are arbitrary constants  
Thus, the displacement vector for initially stressed 
medium M2 is 

6 = 6�= [S�cos �
 + Sb sin �
] D
�E��78F4            (44) 

IV. BOUNDARY CONDITIONS  

The suitable boundary conditions for the proposed 
model are 
(a) The displacement component vanishes at the rigid 
surface 
 = −��
 + ���, 
i.e.   6�
 = −��
 + ���� = 0,               (45) 

(b) The continuity of displacement and stress 
components at the interface, z = −��, i.e.; 
6
 = 6�              (46) 
�
��� = ��(��              (47) 
(c) The continuity of displacement and stress 
components at the interface, z = � ���� i.e.; 
6� = 6�,              (48) 
��(�� = ��,��              (49) 

V. SOLUTION OF THE PROBLEM  

By making use of above boundary conditions in Eqns. 
(10), (18), (25), (36), (44), we get five homogeneous 
equations in S
,S�,…..Se. 

S
7T%R��RX�2� + S�7%R��RX�2� = 0              (50) 

S
7T%R��2� + S�7%R��2� − S�cos ��� + Sb sin ���=0 
              (51) 

S
��
!
7T%R��2�� − S���
!
7%R��2�� −S����qsin ���� +
Sb���q cos ����=0              (52) 

S�cos��� ����� + Sb sin��� ����� − Se7Tf�x ��	��=0 
              (53) 
−S�[��qsin� �� �����] +
Sb[��q cos��� �����] + Seg��7Tf�x ��	��=0            (54) 
For non-zero solution of above homogeneous system of 
equations, we have  

 
                (55) 
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On simplification, we get 

tan ��� = − ����1 − 7�%R��R���g�� M�U � �������
+ ��� U={ � ������ 

−!
�
�1 + 7�%R��R���g�� U={ � �����
− ��� M�U � �������� 

∕ ����1 − 7�%R��R���g�� U={ � ������� − ��� M�U � ������
+ 

!
�
�1 + 7�%R��R���g�� M�U � ����� + ��� U={ � ��������
               (56) 
Equation (56) represents the dispersion relation for 
torsional surface waves under the initially stressed 
porous layer. 

VI. SPECIAL CASES 

Case I:  If � → 0 i.e., then Eqn. (56) takes the form  

tan ��� = − ���g���1 − 7�%R��R��−!
�
����1
+ 7�%R��R�� 

/ −������1 − 7�%R��R� � + !
�
g���1 + 7�%R��R�� 

             (57) 
Equation (57) shows the frequency relation of torsional 
waves under an initially stressed anisotropic porous 
medium. 
Case II: If �
 = 0, Eqn. (56) reduces  

tan ��� = − �g�� U={ � ����� − ��� M�U � �������� 
/{ g�� M�U � ����� 
��� U={ � �������}               (58) 

Equation (58) is the frequency relation of torsional 
surface waves in the transversely anisotropic liquid-
saturated porous medium at interface. 

VII. NUMERICAL PLOTTATIONS 

Numerical computations are performed to demonstrate 
the effect of different values of the ratios of the heights 
of the layers with the fixed values of anisotropy 
parameter N/G, which is based on the dispersion Eqn. 
(56) for the considered problem. The numerical data has 
been taken from [26]. In the figures from 2 to 6, the 
dimensionless phase velocity M/M
  is plotted against the 
dimensionless wave number for fixed values of N/G 
against different values of ratios of heights of the layers 
with the help of MATLAB graphical routines: 

 

Fig. 2. Propagation of surface waves for different values 

of ratios of heights of the layers (H1/H2 = 0.5, 1.0, 1.5, 

2.0, 2.5) against the anisotropy parameter N/G = 0.1. 

 

Fig. 3. Propagation of surface waves for different values 

of ratios of heights of the layers (H1/H2 = 0.5, 1.0, 1.5, 

2.0, 2.5) against the anisotropy parameter N/G=0.2. 

 

Fig. 4. Propagation of surface waves for different values 

of ratios of heights of the layers (H1/H2 = 0.5, 1.0, 1.5, 

2.0, 2.5) against the anisotropy parameter N/G = 0.3. 

 

Fig. 5. Propagation of surface waves for different values 

of ratios of heights of the layers (H1/H2 = 0.5, 1.0, 1.5, 

2.0, 2.5) against the anisotropy parameter N/G = 0.4. 
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Fig. 6. Propagation of surface waves for different values 

of ratios of heights of the layers (H1/H2 = 0.5, 1.0, 1.5, 

2.0, 2.5) against the anisotropy parameter N/G  =0.5. 

VIII. CONCLUSION  

The propagation of surface waves in an initially stressed 
porous layer sandwiched between elastic isotropic 
homogeneous rigid surface and a non-homogeneous 
half- space had been studied in this paper. The 
frequency relation has been obtained analytically by 
using simple mathematical calculations. Some 
particulars cases have also been discussed. We have 
observed that 
 

� The dimensionless phase velocity M/M
  of 
surface waves increases with the decreases of 
the dimensionless wave number in figures 2-6. 

� The phase velocity of the surface waves 
decreases with an increase in the anisotropic 
factor N/G. 

� The ratios of the heights of the layers decrease 
with the increase in the anisotropic factor N/G 
in all figures. 

� The size of irregularity and inhomogeneity 
parameter effects the dispersion relation for 
surface wave propagation for the considered 
model. 

Hence the results obtained in this study may be useful 
for seismic wave propagation which are generated by 
artificial explosion and earthquakes. Due to varied 
application of seismology, this paper may be very 
helpful for researchers as well as post graduate 
students. 
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